Auszeichnungen

ERC Advanced Grant für Herzforschung am MDC

27.04.2022 - Die kontraktilen und elastischen Eigenschaften des Herzens sind fein abgestimmt und ermöglichen einen hohen Wirkungsgrad und schnelle Anpassung. Michael Gotthardt erforscht am MDC die zugrundeliegenden molekularen und biomechanischen Regulationsmechanismen. Dafür erhält er nun einen ERC Advanced Grant.

MERAS steht auf dem kürzlich bewilligten Projektantrag. Die Abkürzung bedeutet: „Mechanoregulation des alternativen Spleißens“. Worum geht es bei MERAS? „Wir wollen verstehen, wie das Herz es schafft, auf Umwelteinflüsse zu reagieren und seine elastischen Eigenschaften so einzustellen, dass es optimal arbeiten kann“, sagt Professor Michael Gotthardt. Der Wissenschaftler leitet am Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft (MDC) die Arbeitsgruppe „Neuromuskuläre und kardiovaskuläre Zellbiologie“. Für sein Vorhaben erhält er jetzt einen Advanced Grant des Europäischen Forschungsrats (ERC) in Höhe von 2,5 Millionen Euro.

Der ERC Advanced Grant geht an Wissenschaftlerinnen und Wissenschaftler mit mehr als zehn Jahren Forschungserfahrung, die in ihrem Gebiet bereits eine prägende Rolle gespielt haben. Insgesamt hatten sich 1735 Forscherinnen und Forscher aus ganz Europa und allen Disziplinen beworben, 253 waren erfolgreich.

Verantwortlich für die Pumpleistung des Herzens sind die Sarkomere, die kleinsten kontraktilen Einheiten des Herzmuskels. Sie bestehen aus Aktin- und Myosinfilamenten, welche die Kontraktion ermöglichen, und dem Riesenprotein Titin. Letzteres ist elastisch und beeinflusst wesentlich die mechanischen Eigenschaften der Herzmuskelzellen. Dabei können unterschiedliche Titin-Varianten (Isoformen) auf Basis eines einzelnen Gens exprimiert werden – jeweils perfekt angepasst an die aktuelle Belastungssituation des Herzens. Diesen Prozess – das alternative Spleißen – wollen die Forschenden im Detail untersuchen.

Raffinierte regulatorische Rückkopplung

„Bei ersten Analysen der Proteinzusammensetzung des Sarkomers fanden wir nicht nur die bekannten Strukturproteine, sondern auch einige bekannte Signalstoffe, die sowohl mit dem Stoffwechsel als auch mit der Regulation der Genexpression und dem alternativen Spleißen zu tun haben. Es sind Proteine, die man normalerweise im Zellkern erwarten würde – aber nicht im Sarkomer“, betont Michael Gotthardt. „Offenbar kommuniziert das Sarkomer dem Zellkern direkt, wie es sich anpassen muss.“ Ein raffinierter regulatorischer Rückkopplungsmechanismus, der erklären würde, wie sich Sarkomere auf die jeweils aktuelle mechanische Belastung einstellen. Das ist eine neue Hypothese, der die Forschenden auf den Grund gehen wollen.

Ein detailliertes Verständnis des gesamten Regelprozesses wäre auch von therapeutischem Nutzen – etwa für Menschen mit Herzinsuffizienz. Bei ihnen sind die Ventrikelwände durch „falsche“ Titine so versteift, so dass sich die Herzkammern nicht mehr ausreichend füllen können. Könnte man am richtigen Punkt medikamentös in den Prozess eingreifen, ließe sich ein kranker Herzmuskel etwas elastischer oder steifer machen, damit er wieder effektiver arbeiten kann.

Ein zweiter ERC-Grant

Im ERC-Auswahlverfahren wurden die Forschungsvorhaben dieses Jahr erstmals nicht nur in Papierform, sondern auch als Kurzvortrag präsentiert – Corona-bedingt natürlich online. „Vier Folien in acht Minuten für ein 2,5-Millionen-Euro-Projekt“, fasst Michael Gotthardt zusammen. Für den Wissenschaftler, der an der Charité – Universitätsmedizin Berlin eine Professur für „Experimentelle und translationale Kardiologe“ innehat, ist es nach dem ERC-Starting Grant 2011 bereits die zweite umfangreiche EU-Förderung. Sie ist auf fünf Jahre angelegt. „Das gibt uns die Möglichkeit, Kooperationen auszubauen und nun auch langfristig ausgelegte Vorhaben umzusetzen. Umfangreiche, kostenintensive Sequenzierarbeiten, die zur Erforschung des alternativen Spleißens nötig sind, ließen sich sonst kaum finanzieren.“

Gotthardts Team arbeitet mit genetischen Mausmodellen, an künstlichem Herzgewebe aus Patientenzellen sowie an Einzelzellen. Bisher sind Experimente zur Einzelzellmechanik echte Feinstarbeit. „Die Herzmuskelzelle muss dafür zunächst isoliert, unter einem besonderen Mikroskop fixiert und elektrisch stimuliert werden. Dann kann man sehen, welche aktiven und passiven Kräfte sie entwickelt“, sagt Michael Gotthardt. Damit wäre genau eine Zelle untersucht. Für aussagekräftige Studien sind jedoch sehr viele solcher Experimente nötig.

Das Ziel: neue Technologien für Einzelzellmechanik und Multi-Omik

Um zu verstehen, welche Titin-Isoformen unter Belastung oder bei Krankheitsprozessen gebildet werden, ist ebenfalls aufwendige Handarbeit nötig. Im Vergleich zu einem großen Gewebestück enthält eine Einzelzelle verhältnismäßig wenige RNA-Moleküle, so dass Untersuchungen der Genexpression oft an der Nachweisgrenze stattfinden. „Die Analyse des alternativen Spleißens ist insbesondere für die bis zu 100.000 Basen langen Titin-Isoformen erschwert – denn die verfügbaren kurzen Sequenzabschnitte müssen wie ein Puzzle zusammengesetzt werden, bei dem oft wichtige Teile fehlen“, sagt Michael Gotthardt. Mit dem ERC-Geld will er unter anderem neue Technologien für die Einzelzellmechanik, -transkriptomik und -proteomik entwickeln, die diese Arbeiten erleichtern und einen höheren Durchsatz erlauben.

Kontakt

Max-Delbrück-Centrum für Molekulare Medizin (MDC)

Robert-Rössle-Str. 10
13125 Berlin
Deutschland

+49 30 9406 0
+49 30 9494161

Folgen Sie der
Management & Krankenhaus

 

 

MICROSITE Gesundheits-technologie

Lesen Sie hier

MICROSITE Digitale Identität

Lesen Sie hier

MICROSITE Smart Soft Locker Solutions

Lesen Sie hier

Folgen Sie der
Management & Krankenhaus

 

 

MICROSITE Gesundheits-technologie

Lesen Sie hier

MICROSITE Digitale Identität

Lesen Sie hier

MICROSITE Smart Soft Locker Solutions

Lesen Sie hier