Medizin & Technik

Neurodegenerative Erkrankungen im Röntgenblick

29.11.2021 - Zu welchen Veränderungen im zentralen Nervensystem kommt es bei neurodegenerativen Erkrankungen in einer betroffenen Hirnregion?

Manche Veränderungen im Gewebe lassen sich unter dem optischen Mikroskop leicht erkennen: zum Beispiel Proteinablagerungen, die bei der Alzheimer-Krankheit auftreten. Krankhafte Veränderungen können aber auch subtilerer Natur sein und ohne quantitative Vermessung und Vergleiche leicht übersehen werden. Forscherinnen und Forscher der Universität und Universitätsmedizin Göttingen haben nun einen neuen Weg gefunden, die neuronale Gewebearchitektur dreidimensional und hochaufgelöst zu vermessen und zu quantifizieren.

Mit ihrer speziellen Röntgenbildgebung konnte das Team in Gewebeproben einen bislang unbekannten Übergang in neuronalen Zellkernen nachweisen, der im Hippocampus von Alzheimer-Patienten auftrat, und auf eine veränderte Aktivität der Neurone hinweist. Die Wissenschaftlerinnen und Wissenschaftler untersuchten neuronales Gewebe aus dem Hippocampus, einer Hirnregion, in der Erinnerungen aus dem Kurzzeit- in das Langzeitgedächtnis überführt werden. Fixierte Gewebeproben mit Durchmessern von einigen Millimetern wurden zunächst mit Phasenkontrast-Röntgentomografie durchleuchtet. Dabei verwendeten sie einen speziellen Phasenkontrast-Tomografen, den das Team um Prof. Dr. Tim Salditt vom Institut für Röntgenphysik der Universität Göttingen am Speicherring PETRA III am Deutschen Elektronen-Synchrotron DESY in Hamburg aufgebaut hat und mit dem sich auch Gewebe abbilden lassen, die Röntgenstrahlung nur schwach oder sogar gar nicht absorbieren. So konnten ganze Volumina zerstörungsfrei und ohne aufwendige Präparation vollständig erfasst werden.

„Dazu muss das dreidimensionale Bild aus optisch stark vergrößerten Projektionen erst durch spezielle Algorithmen auf dem Computer scharfgestellt werden, um ein dreidimensionales Bild mit Pixelgrößen im Bereich von einem Zehntausendstel Millimeter zu erhalten“, erklärt Marina Eckermann, Erstautorin der Arbeit. In diesem „digitalen Zwilling“ der Probe kann man dann durch maschinelles Lernen Neurone identifizieren, die erregbaren Zellen der Nervenreizleitung. Mit neuen mathematischen Methoden der sogenannten optimalen Transporttheorie, die Prof. Dr. Bernhard Schmitzer am Institut für Informatik der Universität Göttingen entwickelt, konnte die Zellpopulation unterschiedlicher Individuen miteinander verglichen werden, ohne dass bestimmte Hypothesen oder Gruppenzugehörigkeiten im Vorhinein definiert werden mussten. Der Vergleich der strukturellen Merkmale bezog sich dabei nicht nur auf die Mittelwerte der entsprechenden Neuronen, sondern auf die Gesamtheit der detektierten Zellen jedes Individuums.

„Die Ergebnisse zeigten nun, dass sich die Zellkerne in einem Teilbereich des Hippocampus bei Alzheimer zu einer kompakten und heterogenen Struktur hin verändern“, sagt Prof. Dr. Tim Salditt von der Universität Göttingen. „Das führt zu einem höheren Anteil von dicht gepackter DNA im Zellkern und dazu, dass die DNA weniger häufig ausgelesen wird. Ob die beobachten Veränderungen im Zellkern auch eine ursächliche Rolle bei der Erkrankung spielen, bleibt noch offen“, erklärt Prof. Dr. Christine Stadelmann-Nessler, Direktorin des Instituts für Neuropathologie der Universitätsmedizin Göttingen.

Die Forschung fand in Zusammenhang mit dem Exzellenzcluster Multiscale Bioimaging und dem Sonderforschungsbereich Mathematik des Experiments der Universität Göttingen statt. Die Ergebnisse der Arbeit sind in der Fachzeitschrift Proceedings of the National Academy of Sciences erschienen.

Kontakt

Georg-August-Universität Göttingen

Robert-Koch-Str. 40 - 42
37075 Göttingen
Deutschland

+49 551 39 959

Folgen Sie der
Management & Krankenhaus

 

 

MICROSITE Gesundheits-technologie

Lesen Sie hier

MICROSITE Digitale Identität

Lesen Sie hier

MICROSITE Smart Soft Locker Solutions

Lesen Sie hier

Folgen Sie der
Management & Krankenhaus

 

 

MICROSITE Gesundheits-technologie

Lesen Sie hier

MICROSITE Digitale Identität

Lesen Sie hier

MICROSITE Smart Soft Locker Solutions

Lesen Sie hier