Physik, die unter die Haut geht
29.08.2019 -
Erstmals ist die Echtzeitortung von beweglichen Mikroobjekten tief im Gewebe möglich.
Moderne Fortschritte in der Medizin bringen es mit sich, dass immer kleinere Objekte durch den menschlichen Körper bewegt werden: Mikroimplantate, Mini-Katheter und winzige medizinische Instrumente. Bereits jetzt wird an der nächsten Generation der minimalinvasiven Mikrochirurgie gearbeitet. Ziel ist es, dass kleine Mikroroboter mit eigenem Antrieb durch den Körper und durch das Gewebe geschickt werden, um Substanzen und Objekte zu transportieren. Gleichzeitig müssen neue Verfahren entwickelt werden, mit denen diese Mikroobjekte geortet und in ihrer Bewegung überwacht werden können.
Herkömmliche Methoden wie Ultraschall, Röntgen oder Magnetresonanzthomographie (MRT) scheitern dabei entweder an der unzureichenden Auflösung oder wegen Langzeitschäden durch Radioaktivität oder hohe Magnetfelder. Prof. Dr. Oliver G. Schmidt und Dr. Mariana Medina Sanchez vom Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (IFW) und ihrem Doktoranden Azaam Aziz ist hier ein entscheidender Schritt gelungen. Sie konnten die Bewegung von einzelnen Mikroobjekten unterhalb von Zentimeter dickem Gewebe in Echtzeit verfolgen.
Dabei nutzten sie die multispektrale optoakustische Tomographie (MSOT). Diese Technik kombiniert die Vorteile der Ultraschallbildgebung hinsichtlich Tiefe und Auflösung mit den Möglichkeiten optischer Methoden, molekulare Strukturen abzubilden. Damit können die spektralen Signaturen der künstlichen Mikroobjekte von denen der Gewebemoleküle deutlich unterschieden werden. Für die Untersuchung wurden die Mikroobjekte mit Goldnanostäben beschichtet. Durch diesen Kniff konnte der Kontrast des Signals entscheidend verbessert werden. Damit war es erstmalig möglich, Mikrostrukturen und Systemkomponenten, die sich tief im Gewebe bewegen, in Echtzeit zu orten.
Hintergrund
Der photoakustische Effekt wurde bereits 1881 von Alexander Graham Bell entdeckt. Er besagt, dass die von einem Material absorbierte Lichtenergie in ein akustisches Signal umgewandelt wird. Moderne optoakustische Bildgebungssysteme verwenden hochenergetische gepulste Laser und hochempfindliche Breitband-Ultraschalldetektoren. Durch die Anregung von Gewebe mit einem Laserpuls und die Erfassung von Schallwellen kann die optische Absorption im Gewebe erfasst und visualisiert werden. Die optoakustische Bildgebung wird vom Münchner Medizintechnikunternehmen ithera Medical weiterentwickelt, mit dem das IFW Dresden für diese Arbeit eng zusammenarbeitet.
Kontakt
Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden
Helmholtzstr. 20
01069 Dresden