Verteiltes maschinelles Lernen: Besserer Datenschutz für KI-Anwendungen?
13.10.2022 - Künstliche Intelligenz (KI) unterstützt die Menschen in Medizin, Mobilität und im Arbeitsalltag.
Grundlage für KI-Systeme ist das Training mit Daten – häufig auch personenbezogenen Informationen. Die Methode des verteilten maschinellen Lernens kann den Datenschutz bei der Entwicklung von KI-Anwendungen verbessern, da die verwendeten Daten dabei nicht zentral gebündelt werden, sondern auf den Endgeräten und damit bei den Usern verbleiben. Allerdings kann dies auch neue Angriffspunkte für Cyberkriminelle schaffen. Einen Überblick über Potenziale und Risiken des verteilten maschinellen Lernens gibt die erste Ausgabe von KI Kompakt, einer neuen Publikationsreihe der Plattform Lernende Systeme.
KI-Systeme analysieren großen Mengen an – teils sensiblen – Daten. Unternehmen stellt die Entwicklung von KI-Anwendungen mithilfe personenbezogener Daten vor große rechtliche Unsicherheiten; die Hürden zur Einhaltung des Datenschutzes und des Rechts auf informationelle Selbstbestimmung sind hoch. Die Methode des verteilten maschinellen Lernens bietet eine technische Lösung, datenschutzwahrende KI-Anwendungen zu schaffen: Statt zentral auf einem Server werden Modelle des maschinellen Lernens (ML-Modelle) auf vielen Endgeräten dezentral trainiert. Somit bleiben die persönlichen Daten bei den Nutzenden.
„Verteiltes maschinelles Lernen eröffnet neue Möglichkeiten zur effektiven und skalierbaren Nutzung von Daten, ohne diese teilen zu müssen. Dadurch werden viele hilfreiche Anwendungen mit sensitiven Daten erst möglich“, so Ahmad-Reza Sadeghi, Professor für Informatik der Technischen Universität Darmstadt und Mitglied der Arbeitsgruppe IT-Sicherheit und Privacy der Plattform Lernende Systeme.
Potenzial für medizinische KI-Lösungen
Zu den aktuellen technischen Ansätzen des verteilten maschinellen Lernens zählen das Split Learning, Federated Learning und Swarm Learning. Insbesondere KI-basierte Gesundheitslösungen, die personalisierte Patientendaten nutzen, um z.B. Krankheitsfälle wie Covid-19 oder Leukämie zu erkennen, können von der Methode des verteilten maschinellen Lernens profitieren.
„KI-Systeme in der Medizin können nur erfolgreich sein, wenn ihnen die zum Erreichen hoher Genauigkeit notwendigen Datenmengen zur Verfügung stehen. Verteiltes maschinelles Lernen stellt eine der wichtigsten technischen Möglichkeiten dar, um dies unter Wahrung der informationellen Selbstbestimmung des Einzelnen zu ermöglichen“, sagt Björn Eskofier, Professor für Maschinelles Lernen und Datenanalytik an der Friedrich-Alexander-Universität Erlangen-Nürnberg und Mitglied der Arbeitsgruppe Gesundheit, Medizintechnik, Pflege der Plattform Lernende Systeme.
Allerdings könne das verteilte maschinelle Lernen auch neue Einfallstore für Angreifer öffnen und möglicherweise ein trügerisches Sicherheitsgefühl erzeugen, heißt es im KI Kompakt. Wie neu entstehende Angriffsfenster geschlossen werden können, ohne die Leistungsfähigkeit einzuschränken, ist noch Gegenstand der Forschung.
Zum Format: KI Kompakt
KI Kompakt bietet einen knappen und fundierten Überblick über aktuelle Entwicklungen im Bereich Künstliche Intelligenz und zeigt Potenziale, Risiken sowie offene Fragen auf. Die Analysen entstehen mit Unterstützung von Experten der Plattform Lernende Systeme und werden von der Geschäftsstelle herausgegeben. Den Auftakt zur neuen Publikationsreihe macht die Ausgabe „Verteiltes maschinelles Lernen: Besserer Datenschutz für KI-Anwendungen?“ Es steht zum kostenfreien Download zur Verfügung.
Kontakt
Lernende Systeme – Die Plattform für Künstliche Intelligenz
Karolinenplatz 4
80333 München