Medizin & Technik

Mit Schallwellen durchs Gehirn

08.12.2023 - Eine in den vergangenen Jahren an der ETH Zürich entwickelte Technologie zur Steuerung von Mikrovehikeln mit Ultraschall funktioniert auch im Gehirn, wie Forschende nun zeigen konnten.

Als Mikrovehikel dienen Gasbläschen. Diese sind ungefährlich und lösen sich nach getaner Arbeit auf. In Zukunft könnten diese Mikrovehikel mit Medikamenten bestückt werden, um diese im Gehirn gezielt abzugeben. Dies könnte die Wirkung der Medikamente erhöhen und ihre Nebenwirkungen verringern.

Hirntumore, Hirnblutungen sowie neurologische und psychische Erkrankungen lassen sich oft nur schwer mit Medikamenten behandeln. Selbst wenn es wirksame Medikamente gibt, haben diese oft starke Nebenwirkungen, weil sie im ganzen Gehirn zirkulieren und nicht nur in dem Bereich, in dem sie wirken sollen. Wissenschaftler setzen daher große Hoffnungen in die Möglichkeit, Medikamente im Gehirn künftig gezielter an einem eng begrenzten Wirkort zu deponieren. Sie sind deshalb daran, Mini-​Transportvehikel zu entwickeln, die sie durch die reich verzweigten Blutbahnen steuern können.

Forschenden der ETH Zürich, der Universität und des Universitätsspitals Zürich ist es nun erstmals gelungen, mit Mikrovehikeln, die sich mit Ultraschall steuern lassen, durch die Blutgefäße im Gehirn eines Tieres zu navigieren.

Ultraschall statt Magnetismus

Gegenüber alternativen Navigationstechniken wie jener über Magnetfelder, hat Ultraschall Vorteile, wie Daniel Ahmed, Prof. für Akustische Robotik an der ETH Zürich und Leiter der Studie, erklärt: „Ultraschall wird in der Medizin bereits breit eingesetzt, dringt tief in den Körper ein und ist sicher.“

Als Mikrovehikel nutzten er und seine Kollegen gasgefüllte Bläschen mit einer Hülle aus Fettsäuren – demselben Bestandteil, aus dem die Membranen biologischer Zellen bestehen. Die Bläschen haben einen Durchmesser von eineinhalb Mikrometern und werden heute als Kontrastmittel in der Ultraschall-​Bildgebung eingesetzt.

Wie die Forschenden nun zeigen, lassen sich diese Bläschen durch die Blutbahn steuern. „Da die Vesikel bereits für den Einsatz beim Menschen zugelassen sind, werden wir unsere Technologie wahrscheinlich schneller zur Zulassung und Anwendung beim Menschen bringen können als alternative Mikrovehikel, an denen derzeit geforscht wird“, sagt Ahmed, der für sein Projekt zur Erforschung und Entwicklung dieser Technologie 2019 einen „Starting Grant“ des Europäischen Forschungsrats ERC erhalten hat.

Ein weiterer Vorteil der ultraschallgesteuerten Mikrobläschen ist, dass sie sich nach getaner Arbeit im Körper zersetzen. Bei der Steuerung über Magnetfelder, einem anderen Ansatz, müssen die Mikrovehikel magnetisch sein, und es ist nicht ganz einfach biologisch abbaubare magnetische Mikrovehikel zu entwickeln. Außerdem sind die Mikrobläschen der ETH-​Forschenden klein und weich. „Wir können damit leicht durch enge Blutkapillaren navigieren“, sagt Alexia Del Campo Fonseca, Doktorandin in Ahmeds Gruppe und Erstautorin der Studie.

Transport gegen die Fließrichtung

Die Steuerung der Mikrobläschen in engen Gefäßen haben Ahmed und seine Gruppe in den vergangenen Jahren im Labor entwickelt. Nun hat er sie zusammen mit Forschenden der Universität und des Universitätsspitals Zürich in den Blutgefäßen des Gehirns von Mäusen getestet. Die Forschenden injizierten die Bläschen in den Blutkreislauf der Mäuse. Ohne äußere Kontrolle werden die Bläschen vom Blutstrom mitgerissen. Den Forschenden gelang es jedoch, die Vesikel mit Ultraschall an Ort zu halten oder sie gegen die Fließrichtung des Bluts durch Gehirngefäße zu steuern. Die Forschenden konnten die Bläschen auch über verschlungene Blutbahnen lenken oder sie die Richtung mehrfach wechseln lassen um sie in feinste Verästelungen der Blutgefäße zu navigieren.

Um die Mikrovehikel zu steuern, haben die Forschenden außen am Schädel der Mäuse vier kleine Energiewandler befestigt. Diese erzeugen Schwingungen im Ultraschallbereich, die sich im Gehirn als Wellen ausbreiten. Dabei können sich die Wellen von zwei oder mehreren Energiewandlern an bestimmten Stellen im Gehirn gegenseitig auslöschen oder verstärken. Die Wissenschaftler navigieren die Bläschen über eine ausgeklügelte dynamische Steuerung der einzelnen Energiewandler. Ein Echtzeit-​Bildfeedback zeigt ihnen dabei, wohin sich die Bläschen bewegen.

Für die Bildgebung in dieser Studie nutzten die Forschenden die Zweiphoton-​Mikroskopie. In Zukunft möchten die Wissenschaftler auch Ultraschall zur Bildgebung nutzen, wozu sie die Ultraschalltechnik weiterentwickeln wollen.

In dieser Studie waren die Mikrobläschen nicht mit Medikamenten bestückt. Die Forschenden wollten zunächst die Vehikel durch die Blutgefäße steuern und die Machbarkeit im Gehirn aufzeigen. Dort liegen vielversprechende medizinische Anwendungen, von Krebs über Schlaganfällen bis zu psychischen Erkrankungen. In einem nächsten Schritt möchten die Forschenden Wirkstoffmoleküle für den Transport außen an die Bläschenhülle heften. Und sie möchten das gesamte Verfahren so weiterentwickeln, dass es auch im Menschen funktioniert. Darauf basierend sollen in Zukunft neue Therapien entwickelt werden.

Folgen Sie der
Management & Krankenhaus

 

 

MICROSITE Gesundheits-technologie

Lesen Sie hier

MICROSITE Digitale Identität

Lesen Sie hier

MICROSITE Smart Soft Locker Solutions

Lesen Sie hier

Folgen Sie der
Management & Krankenhaus

 

 

MICROSITE Gesundheits-technologie

Lesen Sie hier

MICROSITE Digitale Identität

Lesen Sie hier

MICROSITE Smart Soft Locker Solutions

Lesen Sie hier