Labor & Diagnostik

Mit KI-Verfahren Ausbruch der Erbkrankheit ALS vorhersagen

16.02.2023 - Die amyotrophe Lateralsklerose (ALS) – eine schwere Erkrankung des motorischen Nervensystems – ist erblich bedingt, jedoch war ein Großteil der Erblichkeit bisher ungeklärt.

Mit Methoden der Künstlichen Intelligenz (KI) gelang es Forschenden um Prof. Dr. Alexander Schönhuth von der Technischen Fakultät der Universität Bielefeld, die Genotypprofile von 3.000 ALS-Patienten zu erfassen, aufzuschlüsseln und damit mehr über die Entstehung von ALS zu erfahren. Das neue Verfahren ermöglicht es, mit 87-prozentiger Genauigkeit zu prognostizieren, ob Personen an ALS erkranken oder nicht. Die Forschenden stellen ihre Studienergebnisse in Nature Machine Intelligence vor.

Der Bioinformatiker Prof. Dr. Alexander Schönhuth entwickelt in seiner Arbeitsgruppe Genome Data Science (Genom-Datenwissenschaft) Methoden und Werkzeuge, um mit Zehntausenden von Genomen zu arbeiten und die Daten zu analysieren. Die Arbeitsgruppe gehört neben der Technischen Fakultät auch zum Centrum für Biotechnologie (CeBiTec) der Universität Bielefeld. Ein aktueller Forschungsschwerpunkt von Schönhuths Team ist die Erkrankung amyotrophe Lateralsklerose (ALS). Sie wird auch als Motoneuronen-Krankheit bezeichnet. Bei ALS nimmt die Bewegungsfähigkeit der Patienten im Laufe der Zeit ab und kommt zum Stillstand. Gleichzeitig bleibt die Aktivität des Gehirns komplett funktionsfähig.

„Die Krankheit ALS ist bisher noch in weiten Teilen unverstanden“, sagt Alexander Schönhuth. Er hat die Untersuchung zur Diagnose von ALS geleitet. Vor vier Jahren begann er mit der Forschung zu dem Thema, zu der Zeit noch als Arbeitsgruppenleiter am Centrum Wiskunde en Informatica (CWI) in Amsterdam, dem nationalen niederländischen Forschungszentrum für Mathematik und Informatik. „Wir wissen, dass ALS eine vererbbare Krankheit ist, aber 80 % der Erblichkeit sind bislang unerklärt“, sagt der Bioinformatiker.

Die genetische Architektur von ALS ist kompliziert

„Bei vielen Erkrankungen, die erblich bedingt sind, gibt es überlappende, additive Effekte von genetischen Faktoren – z.B. bei Schizophrenie,“, erläutert Schönhuth. „Je mehr dieser Faktoren die Gene aufweisen, umso wahrscheinlicher ist es, dass Personen an Schizophrenie erkranken. Wir können demnach anhand der Gene die genetische Disposition gut erkennen. Bei ALS hingegen ist es viel komplizierter.“ Schönhuth und sein Team nehmen an, dass einzelne Faktoren alleine mit hoher Wahrscheinlichkeit zu ALS führen. Treten diese Faktoren aber gemeinsam auf, ist das Gegenteil der Fall: Es kommt zu keiner Erkrankung. Diese Annahme würde erklären, warum ALS in weiten Teilen unverstanden geblieben ist.

Mit KI-Verfahren genetische Daten von 3.000 ALS-Patienten analysiert

Die zentrale Methode aus der Künstlichen Intelligenz (KI), die Schönhuth und sein Team eingesetzt haben, heißt „Capsule Networks“ (Kapselnetze). Damit wurden genetische Daten von 3.000 ALS-Patienten und 7.000 nicht an ALS-erkrankten Personen ausgewertet. „Der große Vorteil dieses Verfahrens ist, dass Überlappungen von Prozessen erfasst werden können.“ Klassische Methoden kommen mit der Menge an Daten nicht zurecht und liefern keine klaren Ergebnisse. „Unser KI-Verfahren zeigt hingegen nachvollziehbar eindeutig, welche Gene und ihre Prozesse für die Entstehung der ALS-Erkrankung besonders wichtig sind“, sagt Schönhuth.

Mehr als 900 Gene gefunden, die bei Entstehung von ALS eine Rolle spielen

Die Ergebnisse der Wissenschaftler zeigen eine 87-prozentige Genauigkeit im Hinblick auf die Prognose, ob Personen an ALS erkranken oder nicht. „Unser Verfahren kann Vorhersagen bezüglich der Erkrankung treffen. Sie ist viel genauer als andere Methoden. Wir haben mehr als 900 Gene gefunden, die eine Rolle bei der Identifizierung der Erkrankung spielen und 644 Gene, die in komplexen Verbindungen interagieren. Diese Zusammenhänge gilt es in anderen Forschungsgebieten weiter zu untersuchen“, führt Schönhuth aus. „Jedes Gen ist in unterschiedlichen biologischen Prozessen eingebunden. Erfahren wir mehr über die Gene, erfahren wir auch mehr über die Prozesse. So tragen unsere Ergebnisse dazu bei, dass von ALS betroffene Menschen ihren Lebensstil anpassen können, um das Risiko für die Erkrankung zu reduzieren. Zudem könnten auch Medikamente entwickelt werden, die bestimmte Prozesse beeinflussen“, erklärt Schönhuth.

Top Feature

Folgen Sie der
Management & Krankenhaus

 

 

MICROSITE Gesundheits-technologie

Lesen Sie hier

MICROSITE Digitale Identität

Lesen Sie hier

Top Feature

Folgen Sie der
Management & Krankenhaus

 

 

MICROSITE Gesundheits-technologie

Lesen Sie hier

MICROSITE Digitale Identität

Lesen Sie hier