Medizin & Technik

Chirurgie-Ausbildung mit Roboter und Virtueller Realität

08.06.2020 -

Das Einsetzen von Hüftimplantaten stellt hohe Anforderungen an Chirurgen.

Um diese Eingriffe praxisnah trainieren zu können, entwickeln Wissenschaftler der Universität Bremen und der Technischen Universität (TU) Chemnitz einen dynamischen Hüftimplantatsimulator. Die Anwender sehen die Szene in der virtuellen Realität und bedienen dabei OP-Instrumente, die an einen Roboter angeschlossen sind.

Die weltweit steigende Zahl älterer Menschen führt zu einem Anstieg an Hüftimplantationen und anderen Gelenkersatzoperationen. Dadurch wächst auch der Bedarf an gut ausgebildeten orthopädischen Chirurgen. Aber das praxisnahe Training dieser Operationen ist sehr schwierig zu realisieren. Wissenschaftler der Technischen Universität Chemnitz und der Universität Bremen entwickeln daher im Projekt „Dynamic HIPS“ einen dynamischen Hüftimplantatsimulator. Der spezielle Simulator soll den Ärztinnen und Ärzten für Übungen zur Verfügung stehen und ein realistisches Gefühl für den Eingriff vermitteln. Das Projekt ist am 1. Mai gestartet. Gefördert wird das dreijährige Projekt vom Bundesministerium für Bildung und Forschung mit über zwei Millionen Euro. Im Fokus stehen dabei drei besonders kritischen Operationsschritte: das Abtrennen des Hüftgelenkkopfs, das Ausschaben des Oberschenkelknochens und die Implantation des Kunstgelenks. „Die angehenden Chirurgen erhalten durch das System die Möglichkeit, bereits vor ihrer ersten realen OP ein großes Erfahrungswissen zu sammeln“, erklärt Professor Gabriel Zachmann vom Technologie-Zentrum Informatik und Informationstechnik (TZI) der Universität Bremen. „Auch erfahrene Chirurgen profitieren von diesem Trainingssimulator, zum Beispiel durch das Trainieren von komplizierten, selten durchgeführten Eingriffen.“

Gleiche Sinneswahrnehmungen wie bei reale OP

Operationen werden zur Schonung der Patienten oft in möglichst kleinen Operationsöffnungen durchgeführt. „Dadurch operieren Chirurgen sehr stark nach Gefühl“, erläutert Mario Lorenz von der Professur für Werkzeugmaschinenkonstruktion und Umformtechnik an der TU Chemnitz. „Bei Operationen wie dem Einsatz einer Hüftprothese sind gleichzeitig auch manuelle Tätigkeiten mit hohen Kräften erforderlich. Für den Erfolg der OP ist es sehr wichtig, diese Tätigkeiten so präzise wie möglich auszuführen. Bis jetzt fehlt es aber an Trainingsgeräten, die den Chirurgen genau die gleichen Sinneswahrnehmungen vermitteln können, die sie auch bei einer realen Operation spüren würden, zum Beispiel den Widerstand des Knochens beim Sägen und Ausschaben.“

Das Projekt Dynamic HIPS hat sich daher mehrere Ziele gesetzt, die es ermöglichen, die benötigten Trainingsgeräte zu entwickeln. Die Forscher wollen die Kräfte, Drehmomente und Geschwindigkeiten bestimmen, die bei den drei zu simulierenden Operationsschritten auftreten. Auf dieser Basis wollen sie einen Roboterarm und bestehende Haptikgeräte – das sind Geräte, die realistische Sinneswahrnehmungen vermitteln können – weiterentwickeln. Ebenfalls wichtig ist die Schaffung eines mathematischen Modells, das die Widerstände und den Materialabtrag am Knochen simuliert. Diese Informationen müssen innerhalb einer Millisekunde an den Roboter übermittelt werden, um den Chirurgen ein realistisches Gefühl zu vermitteln.

Experten können hinzugeschaltet werden

Ein zweites Bündel an Zielen befasst sich mit der VR-Technologie – die Abkürzung steht für Virtual Reality. Sie ermöglicht das gemeinsame Training über große Distanzen hinweg. Man nennt es auch „Remote-Training“. Mit Hilfe eines Multi-User-Systems können erfahrene Chirurgen ihre medizinische Expertise an auszubildende Kolleginnen und Kollegen weitergeben, ohne selbst vor Ort zu sein. Diese Funktionalität erleichtert nicht nur den Transfer von medizinischer Expertise in Schwellen- und Entwicklungsländer, sondern dient auch dem Erkenntnisaustausch zwischen erfahrenen Chirurgen.

Die Forscher stehen vor der Herausforderung, die zeitlichen Verzögerungen bei der Synchronisation von Szenen trotz großer räumlicher Entfernung zwischen den Nutzerinnen und Nutzern zu minimieren, so dass sich beide Personen in einer identischen Situation befinden. Parallel wollen die Wissenschaftlerinnen und Wissenschaftler die Interaktion zwischen den Nutzerinnen und Nutzern in der VR-Umgebung stärken, indem sie Möglichkeiten bereitstellen, ohne Worte zu kommunizieren – beispielsweise durch das Zeigen auf virtuelle 3D-Zeichnungen. Darüber sollen Arbeitsschritte künftig aufgezeichnet und mit Audio-Kommentaren unterlegt werden können, um Trainingsvideos zu erstellen.

Umfangreiche Nutzerstudie soll Akzeptanz sicherstellen

An dem Projekt beteiligen sich neben der Universität Bremen und der Technischen Universität Chemnitz auch die Unternehmen FAKT Software GmbH, Haption GmbH, CAT Production GmbH und YOUSE GmbH. Ein Teil des Konsortiums hatte im Vorläuferprojekt HIPS („HüftImplantatPfannenfräsSimulator“) bereits einen Trainingssimulator zum Ausfräsen der Hüftgelenkpfanne entwickelt.

Von medizinischer Seite wird die Entwicklung von der Klinik für Orthopädie, Unfallchirurgie und Plastische Chirurgie des Universitätsklinikums Leipzig, dem Zentrum zur Erforschung der Stütz- und Bewegungsorgane (ZESBO), dem Institut für makroskopische klinische Anatomie der Medizinischen Universität Graz (Österreich) sowie der Medizintechnik-Abteilung des Fraunhofer Instituts für Werkzeugmaschinen und Umformtechnik (IWU) begleitet.

Das gesamte Entwicklungsvorgehen in Dynamic HIPS erfolgt nutzerzentriert. Orthopädische Chirurgen werden bei der Ausarbeitung der detaillierten Anforderungen sowie zur Gestaltung und Bewertung der Lösungen einbezogen. Die letzte Projektphase umfasst zudem eine umfangreiche Nutzerstudie.

Kontakt

Universität Bremen

Bibliothekstraße 1
28359 Bremen

Folgen Sie der
Management & Krankenhaus

 

 

MICROSITE Gesundheits-technologie

Lesen Sie hier

MICROSITE Digitale Identität

Lesen Sie hier

MICROSITE Smart Soft Locker Solutions

Lesen Sie hier

Folgen Sie der
Management & Krankenhaus

 

 

MICROSITE Gesundheits-technologie

Lesen Sie hier

MICROSITE Digitale Identität

Lesen Sie hier

MICROSITE Smart Soft Locker Solutions

Lesen Sie hier